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Higher Order Cumulants of Random Vetors andAppliations to Statistial Inferene and Time SeriesS. Rao JammalamadakaUniversity of California, Santa Barbara, USAT. Subba RaoUniversity of Manhester, Manhester, UKGy�orgy TerdikUniversity of Debreen, Debreen, HungaryAbstratThis paper provides a uni�ed and omprehensive approah for deriving ex-pressions for higher-order umulants of random vetors. The approah isbased on expanding the harateristi funtions and umulant generatingfuntions in terms of the Kroneker produts of di�erential operators. Theuse of this methodology is then illustrated in three diverse and novel on-texts, namely: (i) in obtaining a lower bound (Bhattaharya bound) for thevariane-ovariane matrix of a vetor of unbiased estimators where the den-sity depends on several parameters, (ii) in studying the asymptoti theory ofmultivariate statistis when the population is not neessarily Gaussian and�nally, (iii) in obtaining higher order umulant spetra in the study of mul-tivariate nonlinear time series models. Our objetive here is to derive suhexpressions for the higher-order umulants of random vetors using only el-ementary alulus of several variables and to highlight some important andnovel appliations in statistis.AMS (2000) subjet lassi�ation. Primary 62E17, 62E20; seondary 62H10,60E05.Keywords and phrases. Cumulants for random vetors, umulants for likeli-hood funtions, Bhattaharya lower bound, Taylor series expansion, multi-variate time series.1 Introdution and ReviewIt is well known that umulants of order greater than two are zero forrandom variables whih are Gaussian. In view of this, higher-order umu-lants are often used in testing for Gaussianity as well as to prove lassial



Cumulants of random vetors and appliations 327limit theorems. These are also used in asymptoti theory of statistis, suhas in Edgeworth expansions. Consider a salar random variable X, and letus assume that its moment generating funtion in a neighbourhood of theorigin is �nite with moments �j = E(Xj); j = 1; 2; : : :. Let the harateristifuntion of X be denoted by 'X (�), and then it has the expansion given by'X (�) = E(ei�X ) = 1 + 1Xj=1 �j (i�)jj! ; � 2 R: (1.1)From (1.1), we observe that �j = (�i)j �dj'(�)=d�j��=0 : In other words, thejth derivative of the Taylor series expansion of 'X (�) evaluated at � = 0gives the jth moment. The \umulant generating funtion"  X (�) is de�nedas (see e.g., Leonov and Shiryaev, 1959) X (�) = ln'X (�) = 1Xj=1 �j (i�)jj! ; (1.2)where �j is alled as the jth umulant of the random variable X. As before,we have �j = (�i)j �dj X(�)=d�j��=0 : Comparing (1.1) and (1.2), one anwrite the umulants in terms of moments and vie versa. For example, �1 =�1; �2 = �2�(�1)2 et.. Now suppose the random variable X is normal withmean � and variane �2. Then we know that 'X (�) = exp(i��� �2�2=2),whih implies that �j = 0 for all j � 3. We now onsider generalizing theabove results to the ase when X is a d-dimensional random vetor. Thede�nition of the joint moments and the umulants of the random vetor Xrequires a Taylor series expansion of a funtion in several variables and itspartial derivatives in these variables, similar to (1.1) and (1.2). Though theseexpansions may be onsidered straightforward generalizations, the method-ology and the mathematial notation get quite umbersome when dealingwith the derivatives of harateristi funtions and the umulant generat-ing funtions of random vetors. However suh expansions are essential instudying the asymptoti theory in lassial multivariate analysis as well asin multivariate nonlinear time series (see e.g., Subba Rao and Wong, 1999).A uni�ed and streamlined methodology for obtaining suh expressions isdesirable, and that is what we attempt to do here.As an example, onsider a random sample (X1;X2; : : : ;Xn) from a mul-tivariate normal distribution with mean vetor � and variane ovariane



328 S.R. Jammalamadaka, T.S. Rao and G. Terdikmatrix �. We know that the sample mean vetor X has a multivariatenormal distribution, the sample variane ovariane matrix has a Wishartdistribution, and they are independent. However, when the random sampleis not from a multivariate normal distribution, one approah for obtainingsuh distributions is through the multivariate Edgeworth expansion, whoseevaluation requires expressions for higher-order umulants of random ve-tors. Further appliations of these, in the time-series ontext, an be foundin the books of Brillinger (2001), Terdik (1999) and the reent papers ofSubba Rao and Wong (1999) and Wong (1997).Results similar to ours an be found in the works of MCullagh (1987)and Speed (1990), who use Tensor alulus, whereas our methods are simplerrequiring only knowledge of alulus of several variables. Also, we believethis to be a more transparent and streamlined approah. Finally, we deriveseveral new results of interest in statistial inferene and time series usingthese methods. We derive Yule-Walker type di�erene equations in terms ofhigher-order umulants for stationary multivariate linear proesses. Derivedalso are the expressions for higher-order umulant spetra of suh proesses,whih turn out to be useful in onstruting statistial tests for linearityand Gaussianity of multivariate time series. The \information inequality"or the Cramer-Rao lower bound for the variane of an unbiased estimatoris well known for both single parameter and multiple parameter ases. Amore aurate series of bounds for the single parameter ase are given byBhattaharya (1946), and they depend on all higher-order derivatives ofthe log-likelihood funtion. Here we give a generalization of this bound forthe multiparameter ase based on partial derivatives of various orders. Weillustrate this with an example, where we �nd a lower bound for the varianeof an unbiased estimator of a nonlinear funtion of the parameters.In Setion 2, we provide some preparatory materials and de�ne the u-mulants of several random vetors in Setion 3. In Setion 4, we onsidervarious appliations of the above methods to statistial inferene. Theseinlude: (i) properties of the umulants of the partial derivatives of log-likelihood funtion of a random sample (X1;X2; : : : ;Xn) drawn from adistribution F#(x); # 2 
, (ii) multivariate measures of skewness and kur-tosis, (iii) appliations to multiple time series and �nally, (iv) Bhattaharyabounds for multiparameter problems based on the partial derivatives and anillustrative example. In the appendix, we derive some properties of ommu-tation matries and disuss Taylor series expansion in terms of di�erentialoperators.



Cumulants of random vetors and appliations 3292 Preparatory Materials2.1. Di�erential operators. First we introdue the Jaobian matrix andhigher-order derivatives. Let � = (�1; �2; : : : ; �d)0 2 Rd ; and let � (�) =[�1 (�) ; �2 (�) ; : : : ; �m (�)℄0 be a vetor valued funtion, whih is di�eren-tiable in all its arguments (here and elsewhere 0 denotes the transpose). TheJaobian matrix of � is de�ned byD�� = ����0 = � (�) � ���1 ; ���2 ; : : : ; ���d � = 266664 ��1��1 ��1��2 � � � ��1��d��2��1 . . . ...... . . . ...��m��1 � � � � � � ��m��d
377775 :Here and later on, the di�erential operator �=��j is ating from right toleft keeping the matrix alulus valid. We an write this in a vetor form asfollows.Definition 2.1. The operator D
� is de�ned asD
�� = Ve� ����0�0 = Ve266664 ��1��1 ��1��2 � � � ��1��d��2��1 . . . ...... . . . ...��m��1 � � � � � � ��m��d

3777750 ;whih is a olumn vetor of order md.We refer to D
� asK-derivative, and we an also write D
� as a Kronekerprodut.D
�� = Ve�� ���0�0 = Ve� ����0�= [�1 (�) ; �2 (�) ; : : : ; �m (�)℄0 
 � ���1 ; ���2 ; : : : ; ���d �0 :If we apply the operator D
� twie, we obtainD
2� � = D
� �D
��� = Ve ���
 ���� ���0 �0= �
� ����
2 = �
 ���
2 ;



330 S.R. Jammalamadaka, T.S. Rao and G. Terdikand in general (assuming k times di�erentiability), the kth K-derivative isgiven byD
k� � = D
� �D
k�1� ��= [�1 (�) ; �2 (�) ; : : : ; �m (�)℄0 
 � ���1 ; ���2 ; : : : ; ���d �0
kwhih is a vetor of order mdk ontaining all possible partial derivatives ofentries of � aording to the Kroneker produt � ���1 ; ���2 ; : : : ; ���d�0
k :In the following, we give some additional properties of this operator D
�when applied to produts of several funtions. Let K3$2 (m1;m2; d) denotethe ommutation matrix of size m1m2d �m1m2d, hanging the order in aKroneker produt of three vetors of dimension (m1;m2; d) (see the Sub-setion 5.1 in the Appendix for details), suh that the seond and the thirdplaes are interhanged. For example, if a1;a2;a3 are vetors of dimensionm1;m2; d respetively, then we have K3$2 (m1;m2; d) as the matrix de�nedas K3$2 (m1;m2; d) (a1 
 a2 
 a3) = a1 
 a3 
 a2:Property 2.1 (Chain Rule). If � 2 Rd ; �1 2 Rm1 and �2 2 Rm2 ,thenD
� (�1 
 �2) =K�13$2 (m1;m2; d) ��D
��1�
 �2�+ �1 
 �D
��2� ; (2.1)where K3$2 (m1;m2; d) denotes the ommutation matrix. This Chain Rule(2.1) an be extended to produts of several funtions. If �k 2 Rmk ; k =1; 2; : : : ;M , thenD
�Y
(1:M) �k= MXj=1K�1pM+1!j (m1:M ; d) �Y
(1:j�1) �k 
 �D
��j (�)�
Y
(j+1:M) �k� :Here, the ommutation matrix KpM+1!j (m1:M ; d) permutes the vetors ofdimension (m1:M ; d) in the Kroneker produt aording to the permutationpM+1!j of the integers (1 :M + 1) = (1; 2; : : : ;M + 1).



Cumulants of random vetors and appliations 331Consider the speial ase � (�) = �
k. By di�erentiating aording tothe de�nition 1, we getD
��
k = Ve ��
k��0 !0 = �
k 
� ���1 ; ���2 ; : : : ; ���d�0= 0�k�1Xj=0Kj+1$k �d[k℄�1A��
(k�1) 
 Id� ; (2.2)where d[k℄ = [d; d; : : : ; d℄| {z }k .Now suppose that � (�) = x0
k�
k where the vetor x is a vetor ofonstants. Here, � is a salar valued funtion. By using the Property 1 andafter di�erentiating r times, we obtainD
r� x0
k�
k = k (k � 1) � � � (k � r + 1) h�x0��k�r x
ri : (2.3)The reason for (2.3) is that the Kroneker produt x0
k is invariant underthe permutation of its omponent vetors x; i.e.,x0
lKj+1!l �d[l℄� = x0
l;for any l and j so thatx0
k0�k�1Xj=0Kj+1!k �d[k℄�1A = kx0
k;and thus we obtain (2.3). In partiular, if r = k, we haveD
k� x0
k�
k = k!x
k:2.2. Taylor series expansion of funtions of several variables. Let � (�)= � (�1; �2; : : : ; �d) and assume that � is di�erentiable several times ineah variable. Here our objetive is to expand � (�) in Taylor series, andthe expression is given in terms of di�erential operators given above. Weuse this expansion later to de�ne the harateristi funtion and the u-mulant funtions in terms of the di�erential operators. Let � = �(1:d) =(�1; �2; : : : ; �d)0 2 Rd : It is well known that the Taylor series of � (�) is� (�) = 1Xk1;k2;:::;kd=0 1k! (k)�k; (2.4)



332 S.R. Jammalamadaka, T.S. Rao and G. Terdikwhere the oeÆients are  (k) = ��k� (�)��k �����=0 :Here we use the notationk = (k1; k2; : : : ; kd) ; k! = k1!k2! : : : kd!;�k = dYj=1�kjj ; ��k = ��k11 ��k22 � � � ��kdd :The Taylor series (2.4) an be written in a more informative form for ourpurposes, namely � (�) = 1Xm=0 1m! (m; d)0 �
m;where  (m; d) is a olumn vetor, whih is the derivative (K-derivative) ofthe funtion � given by  (m; d) = �D
m� � (�)����=0(see Subsetion 5.2 for details).3 Moments and Cumulants of Random Vetors3.1. Charateristi funtion and moments of random vetors. Let Xbe a d-dimensional random vetor and let X = [X 01;X 02℄0, where X1 isof dimension d1, and X2 is of dimension d2 suh that d = d1 + d2: Let� = ��01;�02�0. The harateristi funtion of X is given by' (�1;�2) = E exp �i �X 01�1 +X 02�2��= 1Xk;l=0 ik+lk!l! E �X 01�1�k �X 02�2�l= 1Xk;l=0 ik+lk!l! E�X
k01 
X
l02 ���
k1 
 �
l2 � :



Cumulants of random vetors and appliations 333Here the oeÆients of �
k1 
�
l2 an be obtained by using the K-derivativeand the formula (2.3). Consider the seond K-derivative of 'D
(1;1)�1;�2 ' (�1;�2)= D
�2 �D
�1' (�1;�2)�= ' (�1;�2)� ���1�
� ���2�= 1Xk;l=1 ik+l�2(k � 1)! (l � 1)!EX
k�101 �
k�11 X
l�102 �
l�12 (X1 
X2) :Now, by evaluating the derivative D
(1;1)�1;�2 ' (�1;�2)����1;�2=0, we obtain EX1
X2. Other moments an be obtained similarly from higher order derivatives.Therefore, the Taylor series expansion of ' (�1;�2) an be written in termsof derivatives and is given by' (�1;�2) = 1Xk;l=0 ik+lk!l! �D
(k;l)�1;�2' (�1;�2)�0�����1;�2=0 �
k1 
 �
l2 :We note that in general�D
(k;l)�1;�2' (�1;�2)�����1;�2=0 = ik+lEX
k1 
X
l26= ik+lEX
l2 
X
k1= �D
(l;k)�2;�1' (�1;�2)�����1;�2=0 ;whih shows that the partial derivatives in this ase are not symmetri.Consider a set of vetors �(1:n) = ��01;�02; : : : ;�0n�0 with dimensions[d1; d2; : : : ; dn℄. We an de�ne the operator D
(1;1)�1;�2 given in the Appendixfor the partitioned set of vetors �(1:n): This is ahieved reursively. Reallthat the K-derivative with respet to�j isD
�j' = Ve ' ���0j!0 :Definition 3.1. The nth derivative D
n�(1:n) is de�ned reursively byD
n�(1:n)' = D
�n �D
n�1�(1:n�1)'� ;



334 S.R. Jammalamadaka, T.S. Rao and G. Terdikwhere D
n�(1:n)' is a olumn vetor of the partial di�erential operator of or-der n.We see that this is the �rst order derivative of the funtion, whih isalready a (n � 1)th order partial derivative. The dimension of D
n�(1:n) isd1[n℄1:n =Qnj=1dj; where 1[n℄ denotes a row vetor having all ones as its entries,i.e., 1[n℄ = [1; 1; :::; 1℄ with dimension n. The order of the vetors in �(1:n) isimportant.The following de�nition generalizes a similar well-known result for salarvalued random variables, to the multivariate ase. Here we assume that thepartial derivatives exist.Definition 3.2. Suppose that X(1:n) = (X1;X2; : : : ;Xn) is a olletionof random (olumn) vetors with dimensions [d1; d2; : : : ; dn℄. The Kronekermoment is de�ned by the following K-derivative:E (X1 
X2 � � � 
Xn)= EY
nj=1Xj = (�i)nD
n�1;�2;:::;�n'X1;X2;:::;Xn (�1;�2; : : : ;�n)����(1:n)=0 :We note that the order of the produt in the expetations and the deriva-tives are important, sine the Kroneker moment is not symmetri if thevariables X1;X2; � � � ;Xn are di�erent.3.2. Cumulant funtion and umulants of random vetors. We obtainthe umulant Cumn (X) as the derivative of the logarithm of the hara-teristi funtion 'X (�) of X = (X1;X2; : : : ;Xn)0 and then evaluate thefuntion at zero to obtain:(�i)n �n ln'X (�)��1[n℄ �����(1:n)=0 = Cumn (X) = Cumn (X1;X2; : : : ;Xn) ;where ��1[n℄= ��1��2 � � � ��n: See Terdik (1999) for details.Now onsider the olletion of random vetorsX(1:n) = (X1;X2; : : : ;Xn) ;where eah Xi is of order di. The orresponding harateristi funtion ofVeX(1:n) is'X(1:n) ��(1:n)� = 'VeX(1:n) �Ve �(1:n)� = E exp �i �Ve �(1:n);VeX(1:n)�� ;



Cumulants of random vetors and appliations 335where �(1:n) = (�1;�2; : : : ;�n) and d(1:n) = (d1; d2; : : : ; dn). We all the log-arithm of the harateristi funtion 'VeX(1:n) �Ve �(1:n)� as the umulantfuntion and denote it by VeX(1:n) �Ve �(1:n)� = ln'VeX(1:n) �Ve �(1:n)� :We write  X(1:n)��(1:n)� for  VeX(1:n)�Ve�(1:n)�. The �rst orderK-derivativeof the umulant funtion  X(1:n) ��(1:n)� with respet to �(1:n) is de�ned asthe umulant ofX(1:n): Now we use the operatorD
n�(1:n) = D
�n�D
n�1�(1:n�1) �reursively and the result is a olumn vetor of the partial di�erentials oforder n; whih is �rst order in eah variable �j . The dimension of D
n�(1:n) isd1[n℄1:n = Qnj=1dj : Now we de�ne the nth order umulant of vetors X(1:n) asfollows.Definition 3.3.Cumn �X(1:n)� = (�i)nD
n�(1:n) X(1:n) ��(1:n)�����(1:n)=0 : (3.1)Therefore, Cumn �X(1:n)� is a vetor of dimension d1[n℄1:n ontaining allpossible umulants of the elements formed from the vetorsX1;X2; : : : ;Xn,and the order is de�ned by the Kroneker produts de�ned earlier (see alsoTerdik, 2002). This de�nition also inludes the evaluation of the umulants,where all the random vetorsX1;X2; : : : ;Xn need not to be distint. In thisase, the harateristi funtion depends on the sum of the orrespondingvariables of �(1:n), and we use still the de�nition (3.1) to obtain the umulant.For example, when n = 1; we haveCum1(X) = EX ;and when n = 2;Cum2(X1;X2) = E [(X1 � EX1)
 (X2 � EX2)℄ (3.2)= Ve Cov(X1;X2);where Cov(X1;X2) denotes the ovariane matrix of the vetors X1 andX2. To illustrate the above formulae, let us onsider an example.Example 3.1. Let X(1;2) = �X 01;X 02�0 and assume that X(1;2) has ajoint normal distribution with moment (�01;�02)0 , and the variane ovariane



336 S.R. Jammalamadaka, T.S. Rao and G. Terdikmatrix C(X1;X2) is given byC(X 01;X02)0 = � C1;1 C1;2C2;1 C2;2 � :Then the harateristi funtion of X(1;2) is given by'X(1;2) (�1;�2) = exp�i ��01�1 + �02�2��12 ��01C1;1�1 + �01C1;2�2 + �02C2;1�1 + �02C2;2�2�� ;and the umulant funtion of X(1;2) is X(1;2)(�1;�2)= ln'X(1;2)(�1;�2)= i(�01�1 + �02�2)� 12 ��01C1;1�1 + �01C1;2�2 + �02C2;1�1 + �02C2;2�2� :Now, the �rst order umulant isCum1 (Xj) = �iD
�j'X(1;2) (�1;�2)����1=�2=0 = �j ;and it is lear that any umulant of order higher than two is zero. One aneasily show that the seond order umulants are the vetors of the ovarianematries, i.e., Cum2 (Xj;Xk) = VeCk;j; j; k = 1; 2:For instane, if j = 2 and k = 1,D
2�1;�2�02C2;1�1 = D
�2 �D
�1�02C2;1�1� = VeC2;1:If j = k = 1, then,D
�1�01C1;1�1 = 2Ve ��01C1;1�0 = 2C1;1�1;and by applying D
�1 repeatedly, we obtainCum2 (X1;X1) = D�1 �D�1�01C1;1�1� =2 = VeC1;1:



Cumulants of random vetors and appliations 3373.3. Basi properties of the umulants. For onveniene of notation,we set the dimensions of X1;X2; : : : ;Xn to be equal to d: The umulantsare symmetri in salar valued ase, but not for vetors. For example,Cum2 (X1;X2) 6= Cum2 (X2;X1). Here we have to use permutation ma-tries (see Appendix for details) as will be shown below.Proposition 3.1. Let p be a permutation of integers (1 : n), and letthe funtion f ��(1:n)� 2 Rd be ontinuously di�erentiable n times in all itsarguments. ThenD
n�p(1:n)f = �Id 
Kp(1:n) (d1:n)�D
n�(1:n)f :(1) Symmetry. If d > 1, then the umulants are not symmetri but satisfythe relation Cumn(X(1:n)) =K�1p(1:n) �d[n℄�Cumn(Xp(1:n));where p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) belongs to the set of all pos-sible permutations Pn of the numbers (1 : n), d[n℄ = (d; d; :::; d)| {z };n andKp(1:n) �d[n℄� is the permutation matrix (see Appendix, equation A.1).For onstant matries A and B and random vetors Y 1, Y 2,Cumn+1(AY 1 +BY 2;X(1:n)) = (A
 Idn)Cumn+1(Y 1;X(1:n))+ (B 
 Idn)Cumn+1(Y 2;X(1:n)):Also Cumn+1(AY 1;BY 2;X(1:n))= (a
B 
 Idn)Cumn+1(Y 1;Y 2;X(1:n));assuming that the appropriate matrix operations are valid.For any pair of onstant vetors a and b,Cumn+1(a
 Y 1 + b
 Y 2;X(1:n)) = a
 Cumn+1(Y 1;X(1:n))+b
 Cumn+1(Y 2;X(1:n)):(2) Independene. If X(1:n) is independent of Y(1:m), where n;m > 0, thenCumn+m(X(1:n);Y(1:m)) = 0:In partiular, if the dimensions are same, we haveCumn(X(1:n) +Y(1:n)) = Cumn(X(1:n)) + Cumn(Y(1:n)):



338 S.R. Jammalamadaka, T.S. Rao and G. Terdik(3) Gaussianity. The random vetor X(1:n) is Gaussian if and only if for allsubsets k(1:m) of (1 : n),Cumm(Xk(1:m)) = 0; m > 2:For further properties of the umulants, we need the following Lemmawhih makes it easier to understand the relations between the moments andthe umulants (see Barndor�-Nielsen and Cox, 1989, p. 140).Remark 3.1. Let Pn be the set of all partitions K of the integers (1 : n).If K = fb1; b2; : : : ; bmg, where eah bj � (1 : n), then jKj = m denotes thesize of K: We introdue an ordering among the bloks in K. For bj ; bk 2 K,we write bj � bk if Xl2bj 2�l �Xl2bk 2�l; (3.3)and equality in (3.3) is possible if and only if j = k: The partition K willbe onsidered as ordered if both, the elements of a blok are ordered insidethe blok, and the bloks are ordered by the above relation bj � bk also.We suppose that all partitions K in Pn are ordered. Denote � = �(1:M) =��01;�02; : : : ;�0M�0 2 RN ;where �j 2 Rdj and N = d1[n℄1:n . In this ase, thedi�erential operator D
jbj�b is well de�ned beause the vetor �b = ��0j ; j 2 b�denotes an ordered subset of vetors ��01;�02; : : : ;�0M� orresponding to theorder in b. The permutation p (K) of the numbers (1 : n) orresponds to theordered partition K. See Andrews (1976) for more details on partitions.We an rewrite the formula of Fa�a di Bruno given for impliit funtions(see Luk�as, 1955) as follows.Lemma 3.1. Consider the impliit funtion f (g (�)), � 2 Rd , where fand g are salar valued funtions and are di�erentiable M times. Supposethat � = �(1:M) = ��01;�02; : : : ;�0M�0 with dimensions [d1; d2; : : : ; dM ℄. Then,for n �M ,D
n�(1:n)f (g (�)) = nXr=1 f (r) (g (�)) XK2PnjKj=rK�1p(K) (d1:n)Y
b2K �D
jbj�b g (�)� ;(3.4)where p (K) is a permutation of (1 : n) de�ned by the partition K, see Re-mark 3.1.We onsider partiular ases of Equation (3.4) whih are useful for prov-ing some properties of umulants.



Cumulants of random vetors and appliations 3393.4. Cumulants in terms of moments. The results obtained here aregeneralizations of the well known results given for salar random variables byLeonov and Shiryaev(1959) (see also Brillinger and Rosenblatt, 1967, Terdik,1999). In order to obtain the umulants in terms of moments, let us onsiderthe funtion f (x) = lnx and g (�) = 'X(1:n) ��(1:n)�. The rth derivative off (x) = lnx is f (r) (x) = (�1)r�1 (r � 1)!x�r:So, the left hand side of Equation (3.4) is the umulant of X(1:n). Hene, weobtainCumn(X(1:n))= nXm=1(�1)m�1(m� 1)! XL2P(1:n)jLj=m K�1p(L) �d(1:n)�Y
j=1:m EY
k2bj Xk; (3.5)where the seond summation is taken over all possible ordered partitionL 2P(1:n) with jLj = m, see Remark 3.1 for details. The expetation operatorE is de�ned in a way suh that E (X1;X2) = (EX1;EX2) :3.5. Moments in terms of umulants. Let f (x) = expx and g (�) = X(1:n) ��(1:n)� : Hene, all the derivatives of f (x) = expx are equal to expx;and therefore, we have�n exp (g (�))��1��2 : : : ��n = exp (g (�)) XK2PnK�1p(K) (d1:n)Y
b2K �D
jbj�b g (�)� : (3.6)The expression for the moment EX
1[n℄(1:n) is quite general. For example, themoment EY
k(1:m)(1:m) an be obtained from EX
1[n℄(1:n) , where(Y 1[k1℄ ; : : : ;Y m[km℄) = (Y 1; : : : ;Y 1| {z }k1 ; : : : ;Y m; : : : ;Y m| {z }km ) = X(1:n); say,i.e., the elements in the produt Y
k(1:m)(1:m) are treated as distint.EX
1[n℄(1:n) = XL2P(1:n)K�1p(L) �d(1:n)�Y
b2L Cumjbj(Xb); (3.7)where the summation is over all ordered partitions L = fb1; b2; : : : ; bkg of(1 : n).



340 S.R. Jammalamadaka, T.S. Rao and G. Terdik3.6. Cumulant of produts via produts of umulants. Let XK denotethe vetor where the entries are obtained from the partition K, i.e., if K =fb1; b2; : : : ; bmg ; then XK = �Q
Xb1 ;Q
Xb2 ; : : : ;Q
Xbm� : The order ofthe elements of the subsets b 2 K and the order of the subsets in K are �xed.Now the umulant of the produts an be expressed by the umulants of theindividual set of variables Xb = (Xj ; j 2 b) ; b 2 L suh that K [ L = O,where O denotes the oarsest partition with one subset f(1 : n)g only. Suhpartitions L and K are alled indeomposable (see Brillinger, 2001, Terdik,1999). Cumk ��Y
Xb1 ;Y
Xb2 ; : : : ;Y
Xbm��= XK[L=OK�1p(L) �d(1:n)�Y
b2L Cumjbj(Xb); (3.8)where Xb denotes the set of vetors from Xs; s 2 b.Example 3.2. Let X be a Gaussian random vetor with EX = 0, AandB be matries with appropriate dimensions and Cov(X;X) = �: Then,Cum �X 0AX;X 0BX� = 2TrA�B0� (3.9)(see Taniguhi, 1991). We an use (3.8) to obtain (3.9) as follows:Cum �X 0AX ;X 0BX�= Cum2 �(VeA)0X 
X; (VeB)0X 
X�= �(VeA)0 
 (VeB)0�Cum2 (X 
X;X 
X)= �(VeA)0 
 (VeB)0� �K�12$3 +K�12$4� [Ve�
Ve�℄= 2 (Ve�)0 (a
B) Ve� = 2TrA�B0�:4 Appliations to Statistial Inferene4.1. Cumulants of the log-likelihood funtion. The above results an beused to obtain the umulants of the partial derivatives of the log-likelihoodfuntion, see Skovgaard (1986). These expressions are useful in the study ofthe asymptoti theory of statistis.Consider a random sample (X1;X2; : : : ;XN ) = X 2 RN with the like-lihood funtion L (#;X) ; and let l (#) denote the log{likelihood funtion,i.e., l (#) = lnL (#;X) ; # 2 Rd :



Cumulants of random vetors and appliations 341It is well known that under the regularity onditions, we haveE�l (#)�#1 �l (#)�#2 = �E �2l (#)�#1�#2 : (4.1)The result (4.1) an be extended to produts of several partial derivatives (ford = 4, MCullagh and Cox (1986) use these expressions in the evaluationof Bartlett's orretion). We an arrive at the result (4.1) from (3.4) byobserving L (#;X) = el(#). Ford = 2; we have�2el(#)�#1�#2 = �2L (#;X)�#1�#2 ;and from (3.4), we have�2el(#)�#1�#2 = el(#) ��l (#)�#1 �l (#)�#2 + �2l (#)�#1�#2� :Equating the above two expressions, we get1L (#;X) �2L (#;X)�#1�#2 = �l (#)�#1 �l (#)�#2 + �2l (#)�#1�#2 :The expeted value of the left hand side of the above expression is zero, asinterhange of the order of the derivative and the integral is allowed. Thisgives the result (4.1). The same argument leads, more generally, to a resultinvolving several partial derivatives:dXr=1 XK2PdjKj=r EYb2K" �jbjQj2b �#j l (#)# = 0: (4.2)This result is a onsequene of (3.6). Proeeding in a similar fashion, as-suming the regularity onditions in higher-order and using (3.7), we obtainthe umulant analogue of the above asdXr=1 XK2PdjKj=rCum �jbjQj2b �#j l (#) ; b 2 K! = 0: (4.3)The equation (4.2) is in terms of the expeted values of the derivatives ofthe log{likelihood funtion, whereas (4.3) is in terms of the umulants. Forexample, suppose that we have a single parameter #, and let us denote�4(m1;m2;m3;m4) = E � ��#l (#)�m1� �2�#2 l (#)�m2� �3�#3 l (#)�m3� �4�#4 l (#)�m4;



342 S.R. Jammalamadaka, T.S. Rao and G. Terdikthen from the formula (4.2) we obtain�4 (0; 0; 0; 1)+4�4 (1; 0; 1; 0)+6�4 (2; 1; 0; 0)+3�4 (0; 2; 0; 0)+�4 (4; 0; 0; 0) = 0:(4.4)To obtain (4.4), we proeed as follows. Consider the partitions K 2 P4. IfjKj = 1, we have only one partition (1; 2; 3; 4) ; if jKj = 2, we have 4 termsof type f(1; 2; 3) ; (4)g and 3 terms of type f(1; 2) ; (4; 3)g, if jKj = 3, wehave 6 terms of the type f(1) ; (2) ; (4; 3)g. Now if #1 = #2 = #3 = #4 = #,then m1;m2;m3;m4 show the numbers of the elements of the subsets in apartition. For instane, (m1;m2;m3;m4) = (2; 1; 0; 0) orresponds to thepartitions of the type f(1) ; (2) ; (4; 3)g and so on. Hene the result (4.4).MCullagh and Cox (1986, eqn. (10), p. 142) obtained a similar result forumulants:Cum� �4�#4 l (#)�+ 4Cum� ��#l (#) ; �2�#2 l (#)�+ 6Cum� ��#l (#) ; ��#l (#) ; �2�#2 l (#)�+ 3Cum� �2�#2 l (#) ; �2�#2 l (#)�+Cum� ��#l (#) ; ��#l (#) ; ��#l (#) ; ��#l (#)�= 0; (4.5)whih is a speial ase of (4.3).4.2. Cumulants of the log-likelihood funtion, the multiple parameterase. The multivariate extension (i.e., when the elements of the parametervetor are vetors as well) of the formula (4.2) an easily be obtained usingLemma 1. If we partition the vetor parameters into n subsets, # = #(1:n) =�#01;#02; : : : ;#0n�0 with dimensions [d1; d2; : : : ; dn℄ respetively, then it followsthat dXr=1 XK2PdjKj=rK�1p(K) (d1:n)EY
b2K �D
jbj#b l (#)� = 0; (4.6)where #b denotes the subset of vetors [#j; j 2 b℄ : In partiular, if n = 2and #1 = #2 = #, then (4.6) gives the well known resultCov (D#l (#) ;D#l (#)) = �E �D#D
# l (#)� :



Cumulants of random vetors and appliations 343In vetorized form, the same an be written asE �D
# l (#)
D
# l (#)� = �E �D
2# l (#)� :In the ase n = 4; say and #1 = #2 = #3 = #4 = #; we have�4 (0; 0; 0; 1)+4�4 (1; 0; 1; 0)+6�4 (2; 1; 0; 0)+3�4 (0; 2; 0; 0)+�4 (4; 0; 0; 0) = 0;where�4 (m1;m2;m3;m4)= E �D
# l (#)�
m1 
 �D
2# l (#)�
m2 
 �D
2# l (#)�
m3 
 �D
2# l (#)�
m4 :We an obtain a similar expression for the umulants, and it is given bydXr=1 XK2PdjKj=rK�1p(K) (d1:n)Cumr �D
jbj#b l (#) ; b 2 K� = 0:4.3. Multivariate measures of skewness and kurtosis for random ve-tors. In this setion, we de�ne what we onsider to be natural measuresof multivariate skewness and kurtosis and show their relation to the mea-sures de�ned by Mardia (1970). Let X be a d-dimensional random vetorwhose �rst four moments exist. Let � denote the positive-de�nite varianeovariane matrix. The \skewness vetor" of X is de�ned by�X = Cum3 ���1=2X;��1=2X;��1=2X�= ���1=2�
3 Cum3 (X;X ;X) ;and the \total skewness" is �X = k�Xk2 :The \kurtosis vetor" of X is de�ned by�X = Cum4 ���1=2X;��1=2X;��1=2X;��1=2X�= ���1=2�
4 Cum4 (X;X ;X ;X) ;and the \total kurtosis" is �X = Tr �Ve�1 �X� ;



344 S.R. Jammalamadaka, T.S. Rao and G. Terdikwhere Ve�1 �X is the matrixM suh that VeM =�X . The skewness andthe kurtosis for a multivariate Gaussian vetor X is zero. �X is also zerofor any distribution whih is symmetri. The skewness and the kurtosis areexpressed in terms of the moments. Suppose that EX = 0: Then�X = ���1=2�
3 EX
3: (4.7)The total skewness �X , whih is just the norm square of the skewness vetor�X , oinides with the measure of skewness �1;d de�ned by Mardia (1970).For any set of random vetors, we haveCum4 (X1:4) = EY
X1:4 � Cum2 (X1;X2)
 Cum2 (X3;X4)�K�1p2$3 �d[4℄�Cum2 (X1;X3)
 Cum2 (X2;X4)�K�1p4$2 �d[4℄�Cum2 (X1;X4)
 Cum2 (X2;X3) ; (4.8)and therefore the kurtosis vetor ofX an be expressed in terms of the fourthorder moments. By putting X1 =X2 =X3 =X4 =X in the above,�X =���1=2�
4 Cum4 (X;X ;X ;X)=���1=2�
4 EX
4 � �I +K�1p2$3 �d[4℄�+K�1p4$2 �d[4℄��� ���1=2�
4 Cum2 (X;X)
 Cum2 (X;X)=���1=2�
4EX
4 � �I+K�1p2$3 �d[4℄�+K�1p4$2 �d[4℄�� [Ve Id
Ve Id℄ :(4.9)Mardia (1970) de�ned the measure of kurtosis as�2;d = E �X 0��1X�2 ;and this is related to our total kurtosis measure �X as follows�2;d = �X + d(d + 2) = Tr �Ve�1 �X�+ d(d+ 2):IndeedTr�Ve�1 ����1=2�
4 EX
4��= ETr�h��1=2Xi
2 h��1=2Xi0
2�= ETr ����1=2X�0 ���1=2X��
2! = E �X 0��1X�2 :



Cumulants of random vetors and appliations 345We note that if X is Gaussian, then �X = 0, and hene �2;d = d(d+ 2):4.4. Multiple linear time series. Let X t be a d dimensional disretetime stationary time series. Let Xt satisfy the linear representation (seeHannan, 1970, p. 208) Xt = 1Xk=0H (k) et�k; (4.10)where H (0) is identity, P kH (k)k < 1; the et's are independent andidentially distributed random vetors with Eet = 0; Eete0t = �. Let�m+1 (e) = Cumm+1 (et;et; : : : ;et) be the vetor dm+1 � 1. We note that�2 (e) = Ve�, and the umulant of Xt isCumm+1 (Xt;Xt+�1 ;Xt+�2 ; : : : ;Xt+�m)= 1Xk=0H (k)
H (k + �1)
 � � � 
H (k + �m)�m+1 (e) (4.11)= Cm+1 (�1; �2; : : : ; �m) :Let Xt satisfy the autoregressive model of order p given byX t +A1Xt�1 +A2X t�2 + � � �+ApX t�p = et;whih an be written as�I +A1B +A2B2 + � � �+ApBp�Xt = et;where B is the bakshift operator. We assume that the oeÆients fAjgsatisfy the usual stationarity ondition (see Hannan, 1970, p. 212) and notethatX t = �I +A1B +A2B2 + � � � +ApBp��1 et =  1Xk=0H (k)Bk! et: (4.12)From (4.10) and (4.12), we have�I +A1B +A2B2 + � � � +ApBp� 1Xk=0H (k)Bk! = I ; (4.13)from whih we obtainH (0) + (H (1) +A1H (0))B + (H (2) +A1H (1) +A2H (0))B2 + � � �+ (H (p) +A1H (p� 1) +A2H (p� 2) + � � � +ApH (0))Bp + � � �+H (p+ 1) +A1H (p) + � � �+= I :



346 S.R. Jammalamadaka, T.S. Rao and G. TerdikEquating powers of Bj for j � 1, we getH (j) +A1H (j � 1)+A2H (j � 2)+ � � �+ApH (j � p) = 0; j � 1 (4.14)(here we use the onvention H (j) = 0; if j < 0). A reursive formula forH(j) follows from (4.14). By substituting for H (k + �1) from this formulainto (4.11), for �1 � 1, we getCm+1 (�1; �2; : : : ; �m)=� 1Xk=0H (k)
[A1H (k+�1�1) +A2H (k+�1�2) + � � �+ApH (k+�1�p)℄
 � � � 
H (k+�m)�m+1 (e)=� pXj=1 1Xk=0H(k)
AjH (k+�1�j)
H(k+�2)
� � �
H(k+�m)�m+1 (e)=� pXj=1 1Xk=0 [Id
Aj
Idm�1 ℄ [H(k)
H(k+�1�j)
H(k+�2)
H(k+�m)℄� �m+1 (e)= pXj=1 (Id 
Aj 
 Idm�1)Cm+1 (�1�j ; �2; : : : ; �m) :Thus, we obtainCm+1 (�1; �2; : : : ; �m) = � pXj=1 (Id 
Aj 
 Idm�1)Cm+1 (�1 � j; �2; : : : ; �m) :(4.15)If we put m = 1 in (4.15), we getC2 (�1) = � pXj=1 (Id 
Aj)C2 (�1 � j) ;whih an be written in matrix form asC2 (�1) = � pXj=1AjC2 (�1 � j) ;whih is the well known Yule-Walker equation in terms of seond order o-varianes. Therefore, we an onsider (4.15) as an extension of Yule-Walker



Cumulants of random vetors and appliations 347equations in terms of higher-order umulants for multivariate autoregressivemodels.The de�nition of the higher-order umulant spetra for stationary timeseries omes in a natural way. Consider the time series Xt with (m+ 1)thorder umulant funtionCumm+1 (Xt;X t+�1 ;X t+�2 ; : : : ;Xt+�m) = Cm+1 (�1; �2; : : : ; �m) ;and de�ne the mth order umulant spetrum as the Fourier transform of theumulantsSm (!1; !2; : : : ; !m) = 1X�1;�2;:::;�m=�1Cm+1 (�1; �2; : : : ; �m) exp0��i mXj=1 �j!j1A ;provided that the in�nite sum onverges. We note here that the onnetionbetween the usual matrix notation for the seond order spetrum S2 (!) isgiven as S2 (!) = Ve [S2 (!)℄0 ;see (3.2).4.5. Bhattaharya-type lower bound for the multiparameter ase. In thissetion, we obtain a lower bound for the variane ovariane matrix of anunbiased vetor of statistis, whih is a linear funtion of the �rst k partialderivatives. This orresponds to the well known Bhattaharya bound (seeBhattaharya, 1946, Linnik, 1970) for the multiparameter ase, whih doesnot seem to have been onsidered anywhere in the literature. Consider arandom sample (X1;X2; : : : ;Xn) = X 2 Rnd0 with likelihood funtionL (#;X), # 2 Rd . Suppose that we have a vetor of unbiased estimators,say, bg (X) of g (#) 2 Rd1 . De�ne the random vetors�0Df = � 1L (#;X)D
#L (#;X)0 ; 1L (#;X)D
2# L (#;X)0 ;: : : ; 1L (#;X)D
k# L (#;X)0� ;�0 = �bg0 (X) ;�0Df� ;where the dimension of� is d1+d+d2+: : :+dk. The seond order umulantbetween bg (X) and the derivatives 1L (#;X)D
j# L (#;X), j = 1; 2; : : : ; k, is



348 S.R. Jammalamadaka, T.S. Rao and G. Terdikas follows Cum�bg (X) ; 1L (#;X)D
j# L (#;X)�= Ve Z hD
j# L (#;X)i bg (X)0 dX= Z bg (X)
D
j# L (#;X) dX = D
j# g (#) :The ovariane matrix between bg (X) and 1L (#;X)D
j# L (#;X) is alu-lated using (3.2). The variane matrix Var (�Df ) is singular beause theelements of the derivatives D
j# L (#;X) are not distint. Therefore, weredue the vetor of derivatives using distint elements only. To make itpreise, we �rst onsider seond order derivatives. We de�ne the dupliationmatrix D2;d, whih redues the symmetri matrix Vd to the matrix �2 (Vd),whih is the vetor of lower triangular elements of Vd. We de�ne D2;d asfollows: D2;d�2 (Vd) = Ve Vd:The dimension of �2 (Vd) is d (d+ 1) =2, and that of D2;d is d2�d (d+ 1) =2.It is easy to see thatD02;dD2;d is non-singular (the olumns ofD2;d are linearlyindependent { eah row has exatly one nonzero element). Therefore, theMoore-Penrose inverse D+2;d of D2;d isD+2;d = �D02;dD2;d��1D02;dsuh that �2 (Vd) = D+2;dVe Vd(see Magnus and Neudeker, 1999, Ch. 3 Se. 8, for details). The operatorD
2# is de�ned by D
2# = Ve ��� ���0 ;whih is atually � ����
2 : The matrix ��� ���0 is symmetri, and therefore wean use the inverse D+2;d of the dupliation matrixD+2;dD
2# = �2 �D
2# �to get the neessary elements of the derivatives. We an extend this proe-dure for higher-order derivatives by de�ningD+k;dD
k# = �k �D
k# � ;



Cumulants of random vetors and appliations 349where �k �D
k# � is a vetor of the distint elements of D
k# listed in theoriginal order in D
k# . Now, letCg;j = Cov�bg (X) ; 1L (#;X) �D+j;dD
j# �L (#;X)�The elements of Cg;j are those of the umulant (see (3.2))Cum�bg (X) ; 1L (#;X) �D+j;dD
j# �L (#;X)� :Now, onsidering the vetor of all distint and nonzero derivatives,�0Df = � 1L (#;X)D
#L (#;X)0 ; 1L (#;X)D+2;dD
2# L (#;X)0 ;: : : ; 1L (#;X)D+k;dD
k# L (#;X)0� ;�0 = �bg0 (X) ;�0Df� ;we obtain the generalized Bhattaharya lower bound in the ase of multipleparameters. This is obtained by onsidering the variane matrix of�0, whosepositive semi-de�niteness impliesVar (bg (X))�Cg;Df Var (�Df )�1C 0g;Df � 0 (4.16)withCg;Df = [Cg;1;Cg;2; : : : ;Cg;k℄ : The Cramer- Rao inequality is obtainedby setting k = 1, i.e., by onsidering only the �rst derivative vetor.Let us now onsider an example to illustrate the Bhattaharya boundgiven by (4.16).Example 4.1. Let (X1;X2; : : : ;Xn) =X 2 Rnd0 be a sequene of inde-pendent Gaussian random vetors with mean vetor # 2 Rd0 , and varianematrix Id0 . Suppose that we want to estimate the funtion g (#) = k#k2 2R. Here d = d0; d1 = 1. The unbiased estimator for g (#) isbg (X) = dXk=1�X2k � 1n� ;where Xk is the sample mean omputed using the random sample onsistingof n observations on the kth random variable of the random vetor X. The



350 S.R. Jammalamadaka, T.S. Rao and G. Terdikvariane of the estimator bg (X) isVar (bg (X)) = dXk=1�4#2kn + 2n2� = 4n k#k2 + 2dn2 : (4.17)The Cramer-Rao bound for this estimator is 4n k#k2, whih is stritly lessthan the atual variane. The derivatives D
j# L (#;X) for j > 2 are zero.For j = 1; 2, we haveD
#L (#;X) = n �X � #�L (#;X) ;D
2# L (#;X) = n2 ��X � #�
2 � 1n Ve Id�L (#;X) :Therefore, we obtain (using all the elements of seond partial derivativematrix) e�0Df = � 1L (#;X)D
#L (#;X)0 ; 1L (#;X)D
2# L (#;X)0�= �n �X � #�0 ; n2 ��X � #�
2 � 1n Ve Id�0� :Note that if we onsider only the vetor of �rst derivatives, then the seondelement of above vetor will not be inluded in the lower bound, making theCramer-Rao bound smaller. If we use the redued number of elements fore�0Df , we have�0Df = �n �X � #�0 ; n2 �D+2;d �X � #�
2 � 1nD+2;dVe Id�0� :The variane matrix of �Df will ontain the following matrix as a diagonalblok:n2C2 = n2Ve�1d2;d2 �D+2;d�
2 Cum2���X � #�
2 � 1n Ve Id��= Ve�1d2;d2 �D+2;d�
2 h�K�1p2$3 �d[4℄�+K�1p1$3 �d[4℄�� (Ve Id)
2i= D+2;d �Id2 +Kp1$2 �d[4℄�� �D+2;d�0 :Denote 12 �Id2 +Kp1$2 �d[4℄�� = Nd;



Cumulants of random vetors and appliations 351and then the matries satisfy Nd = N0d = N2d;and Nd = D2;dD+2;d(see Magnus and Neudeker, 1999, Ch. 3 Se. 7-8, Theorem 11 and 12). Weobtainn2C2 = 2D+2;dNd �D+2;dNd�0 = 2D+2;d �D+2;d�0 = 2 �D02;dD2;d��1 ;whih is invertible. The inverse of the variane matrix of �Df is given by[Var (�Df )℄�1 = � 1nId 00 12n2D02;dD2;d � :Now, to obtain the matrix Cg;Df = [Cg;1;Cg;2℄, we needCum�bg (X) ; 1L (#;X)D
#L (#;X)� = D
#g (#) = D
##0# = 2#;Cg;1 = 2#0;and Cum�bg (X) ; 1L (#;X)� �D
2# �L (#;X)� = 2D+2;dVe IdC 0g;2 = 2D+2;dVe Id:Finally, we obtainCg;Df Var (�Df )�1C 0g;Df=4n k#k2 + 2n2 (Ve Id)0 �D2;dD+2;d�0D2;dD+2;dVe Id=4n k#k2 + 1n2 (Ve Id)0NdVe Id=4n k#k2 + 2dn2 ;whih is the Bhattaharya bound and is the same as the variane of thestatisti bg (X), given by (4.17).



352 S.R. Jammalamadaka, T.S. Rao and G. TerdikAppendixA.1. Commutation matries. The Kroneker produts have the advan-tage in the sense that we an ommute the elements of the produts usinglinear operators alled ommutation matries (see Magnus and Neudeker,1999, Ch. 3 Se. 7, for details). We use these operators here in the ase ofvetors. Let A be a matrix of order m� n; and the vetor VeA0 is a per-mutation of the vetor VeA. Therefore there exists a permutation matrixKm�n of order mn�mn, alled ommutation matrix, whih is de�ned by therelation Km�nVeA = VeA0:Now, if a is m� 1 and b is n� 1, thenKm�n (b
 a) =Km�nVe �ab0� = Ve �ba0� = a
 b:From now on in the sequel, we shall use a more onvenient notationKm�n =K (n;m) ;whih means that we are hanging the order in a K-produt b
a of vetorsb 2 Rn and a 2 Rm .Now, onsider a set of vetors (a1;a2; : : : ;an) with dimensions d(1:n) =(d1; d2; : : : ; dn) respetively. De�ne the matrixKj+1$j �d(1:n)� =Y
i=1:j�1 Idi 
K (dj; dj+1)
Y
i=j+2:n Idi ;where Q
i=1:j stands for the Kroneker produt of the matries indexed by1 : j = (1; 2; : : : ; j) : Clearly,Kj+1$j (d1:n)Y
i=1:n ai=Y
i=1:j�1 (Idiai)
 (K (dj ; dj+1) (aj 
 aj+1))
Y
i=j+2:n (Idiai)=Y
i=1:j�1 ai 
 aj+1 
 aj 
Y
i=j+2:n ai:Therefore, one is able to transpose (interhange) the elements aj and aj+1in a Kroneker produt of vetors by the help of the matrix Kj$j+1 (d1:n) :In general, K 0j$j+1 (d1:n) =K�1j$j+1 (d1:n) but Kj+1$j 6=Kj$j+1 beausethe dimensions dj+1 and dj are not neessarily equal. If they are equal, thenKj+1$j = Kj$j+1 = K�1j$j+1 = K 0j$j+1: We reall that Pn denotes the



Cumulants of random vetors and appliations 353set of all permutations of the numbers (1 : n) = (1; 2; : : : ; n). If p 2 Pnthen p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) : From this, it follows that for eahpermutation p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) ; p 2 Pn, there exists a matrixKp(1:n) (d1:n) suh thatKp(1:n) �d(1:n)�Y
i=1:n ai =Y
i=1:n ap(i); (A.1)just beause any permutation p (1 : n) an be obtained from the produt bythe transposition of neighbouring elements. Sine there is an inverse of thepermutation p (1 : n), there exists an inverse K�1p(1:n)(d1:n) for Kp(1:n)(d1:n)as well. Note that the entries of d1:n are not neessarily equal { they are thedimensions of the vetors ai; i = 1; 2; : : : ; n. The following example showsthat Kp(1:n) (d1:n) is uniquely de�ned by the permutation p (1 : n) and theset d1:n: The permutation p2!4 is the produt of two interhanges p2 !3and p3 !4, i.e.,Kp2!4 (d1:4) =Kp3 !4 (d1; d3; d2; d4)Kp2 !3 (d1:4)= (Id1 
 Id3 
Kd4�d2) (Id1 
Kd3�d2 
 Id4) :This proess an be followed for any permutation p (1 : n) and for any setd1:n of the dimensions.Likewise, the matrix with only the pair of elements j and k transposedin the produt, may be denoted by Kpj$k (d1:n). We will use the simpli�ednotationsKj$k andKj!k for the operatorsKpj$k andKpj!k , respetively.It an be seen that K 0j$k =K�1j$k =Kk$j: (A.2)Let A be m� n and B be p� q matries, it is well known thatK1$2 (m; p) (A
B)K1$2 (q; n) = B 
A:The same argument in the ase of vetor Kroneker produt leads to thetehnique of permuting matries in a Kroneker produt by the help of om-mutation matrix Kp.Using the above notation, we an writeVe (A
B) = (In 
K (m; q)
 Ip) VeA
VeB=K2$3 (n;m; q; p)VeA
VeB: (A.3)



354 S.R. Jammalamadaka, T.S. Rao and G. TerdikA.2. Taylor series in terms of di�erential operators. We have (�) = 1Xk1;k2;:::;kd=0 1k! (k)�k = 1Xm=0 1m! mXk1;k2;:::;kd=0�kj=m m!k!  (k)�k:This an be re-written in the form (�) = 1Xm=0 1m! (m; d)0 �
m;where  (m; d) is a olumn vetor (m; d) = �D
m�  (�)�����=0with appropriate entries from the vetors f (k) ;�kj = mg. The dimen-sion of  (m; d) is the same as that of �
m, i.e., dm: To obtain the aboveexpansion, we proeed as follows. Let x 2 Rd be a real vetor and onsider�x0��m = 0� dXj=1 xj�j1Am = mXk1;k2;:::;kd=0�kj=m m!k! xk�k;and we an also write�x0��m = �x0��
m = �x
m�0 �
m:Therefore mXk1;k2;:::;kd=0�kj=m m!k! xk�k = �x
m�0 �
m:The entries of the vetor  (m; d) orrespond to the operator ��k��k hav-ing the same symmetry as xk: Therefore, if x
m is invariant under somepermutation of its fators, then  (m; d) is invariant as well. From Equation(2.3) we obtain that  (m; d) = �D
m�  (�)����=0 :
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