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Abstract

This paper provides a unified and comprehensive approach for deriving ex-
pressions for higher-order cumulants of random vectors. The approach is
based on expanding the characteristic functions and cumulant generating
functions in terms of the Kronecker products of differential operators. The
use of this methodology is then illustrated in three diverse and novel con-
texts, namely: (i) in obtaining a lower bound (Bhattacharya bound) for the
variance-covariance matrix of a vector of unbiased estimators where the den-
sity depends on several parameters, (ii) in studying the asymptotic theory of
multivariate statistics when the population is not necessarily Gaussian and
finally, (iii) in obtaining higher order cumulant spectra in the study of mul-
tivariate nonlinear time series models. Our objective here is to derive such
expressions for the higher-order cumulants of random vectors using only el-
ementary calculus of several variables and to highlight some important and
novel applications in statistics.
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1 Introduction and Review

It is well known that cumulants of order greater than two are zero for
random variables which are Gaussian. In view of this, higher-order cumu-
lants are often used in testing for Gaussianity as well as to prove classical
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limit theorems. These are also used in asymptotic theory of statistics, such
as in Edgeworth expansions. Consider a scalar random variable X, and let
us assume that its moment generating function in a neighbourhood of the
origin is finite with moments 1; = E(X7), j =1,2,.... Let the characteristic
function of X be denoted by px (A), and then it has the expansion given by

ox (\) = E(e?X) :1+Zuj(i%,)j, AER (1.1)
=1 '

From (1.1), we observe that p; = (—i) [djtp()\)/d)\j])\:o . In other words, the
4™ derivative of the Taylor series expansion of px ()\) evaluated at A = 0
gives the 5" moment. The “cumulant generating function” 1y (\) is defined
as (see e.g., Leonov and Shiryaev, 1959)

(i)’

Y () =Inex (N =Dy

J=1

, (1.2)

where k; is called as the 4" cumulant of the random variable X. As before,
we have k; = (—i)/ [dji/)X()\)/d)\j])\ZO. Comparing (1.1) and (1.2), one can
write the cumulants in terms of moments and vice versa. For example, k1 =
p1, Ko = fig— (M1)2 etc.. Now suppose the random variable X is normal with
mean g and variance o2. Then we know that @x (A) = exp(idp — A\202/2),
which implies that x; = 0 for all j > 3. We now consider generalizing the
above results to the case when X is a d-dimensional random vector. The
definition of the joint moments and the cumulants of the random vector X
requires a Taylor series expansion of a function in several variables and its
partial derivatives in these variables, similar to (1.1) and (1.2). Though these
expansions may be considered straightforward generalizations, the method-
ology and the mathematical notation get quite cumbersome when dealing
with the derivatives of characteristic functions and the cumulant generat-
ing functions of random vectors. However such expansions are essential in
studying the asymptotic theory in classical multivariate analysis as well as
in multivariate nonlinear time series (see e.g., Subba Rao and Wong, 1999).
A unified and streamlined methodology for obtaining such expressions is
desirable, and that is what we attempt to do here.

As an example, consider a random sample (X1, X9, ..., X,) from a mul-
tivariate normal distribution with mean vector p and variance covariance
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matrix Y. We know that the sample mean vector X has a multivariate
normal distribution, the sample variance covariance matrix has a Wishart
distribution, and they are independent. However, when the random sample
is not from a multivariate normal distribution, one approach for obtaining
such distributions is through the multivariate Edgeworth expansion, whose
evaluation requires expressions for higher-order cumulants of random vec-
tors. Further applications of these, in the time-series context, can be found
in the books of Brillinger (2001), Terdik (1999) and the recent papers of
Subba Rao and Wong (1999) and Wong (1997).

Results similar to ours can be found in the works of McCullagh (1987)
and Speed (1990), who use Tensor calculus, whereas our methods are simpler
requiring only knowledge of calculus of several variables. Also, we believe
this to be a more transparent and streamlined approach. Finally, we derive
several new results of interest in statistical inference and time series using
these methods. We derive Yule-Walker type difference equations in terms of
higher-order cumulants for stationary multivariate linear processes. Derived
also are the expressions for higher-order cumulant spectra of such processes,
which turn out to be useful in constructing statistical tests for linearity
and Gaussianity of multivariate time series. The “information inequality”
or the Cramer-Rao lower bound for the variance of an unbiased estimator
is well known for both single parameter and multiple parameter cases. A
more accurate series of bounds for the single parameter case are given by
Bhattacharya (1946), and they depend on all higher-order derivatives of
the log-likelihood function. Here we give a generalization of this bound for
the multiparameter case based on partial derivatives of various orders. We
illustrate this with an example, where we find a lower bound for the variance
of an unbiased estimator of a nonlinear function of the parameters.

In Section 2, we provide some preparatory materials and define the cu-
mulants of several random vectors in Section 3. In Section 4, we consider
various applications of the above methods to statistical inference. These
include: (i) properties of the cumulants of the partial derivatives of log-
likelihood function of a random sample (X1, X5,...,X,) drawn from a
distribution Fy(x), ¢ € Q, (ii) multivariate measures of skewness and kur-
tosis, (iii) applications to multiple time series and finally, (iv) Bhattacharya
bounds for multiparameter problems based on the partial derivatives and an
illustrative example. In the appendix, we derive some properties of commu-
tation matrices and discuss Taylor series expansion in terms of differential
operators.
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2 Preparatory Materials

2.1.  Differential operators. First we introduce the Jacobian matrix and
higher-order derivatives. Let A = (A, A2,...,Aq)" € R%, and let ¢ (A) =
[d1 (A), 2 (A), ..., dm (A)]" be a vector valued function, which is differen-
tiable in all its arguments (here and elsewhere ' denotes the transpose). The
Jacobian matrix of ¢ is defined by

01 0¢1 ... 0%
N O g
Dyp=22 _pony |2, L 9 oo :
AT N T oA ONT T 0N | o
)Y )W

Here and later on, the differential operator 0/0); is acting from right to
left keeping the matrix calculus valid. We can write this in a vector form as
follows.

DEFINITION 2.1. The operator D% is defined as

91 O .. 91 7!
I Do W
09\’ 8 -, :

DP%¢p =Vec | — | =Vec| N ,
>\¢ <8A,> . .
Om .. ... O¢m
N )W

which is a column vector of order md.

We refer to D% as K-derivative, and we can also write D% as a Kronecker
product.

D%q& = Vec (Qb%) = Vec <%¢)'>

SRR PR
1A e (A) sy (V)] ®[8—>\1’8—>\2""’8—>\d] ,

If we apply the operator D% twice, we obtain
D®2 — D® (D® _ 9 9 ,
@ = )\( A¢)—Vec ¢®ﬁ =

ON
0\ ®? B,
:¢®<ﬁ> :d’@W’
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and in general (assuming k times differentiability), the k* K-derivative is
given by

D{*¢ = DY (DY 9)

o 0 o 1'%k
X’ 0Ny ’G—Ad]

) d2 ) )] ®[

which is a vector of order md* containing all possible partial derivatives of

9 9 0 >’®k

entries of ¢ according to the Kronecker product (8—)\1, e O

In the following, we give some additional properties of this operator D%
when applied to products of several functions. Let K35 (mq, mso,d) denote
the commutation matrix of size mimad X mimad, changing the order in a
Kronecker product of three vectors of dimension (mi,mo,d) (see the Sub-
section 5.1 in the Appendix for details), such that the second and the third
places are interchanged. For example, if a;, a2, a3 are vectors of dimension
m1,Ma, d respectively, then we have K3, (m1, mo,d) as the matrix defined
as

Kj3 (ml,mg,d) (a1 Ras @ a3) =a1®a3 R as.

PROPERTY 2.1 (CHAIN RULE). If A € R?, ¢, € R™ and ¢, € R,
then

DS (91 © ¢3) = K3\ (m1,ma,d) (DS 1) @ ¢) + b1 @ (D), (2.1)

where K39 (m1, mo,d) denotes the commutation matrix. This Chain Rule
(2.1) can be extended to products of several functions. If ¢, € R™ k =
1,2,..., M, then

DY HQ?M by,
- ZKMHH (M1, d) [H? b1, © [DYd; (A ®H et ] :

Here, the commutation matrix Ky, . (m1.a,d) permutes the vectors of
dimension (mq.p7, d) in the Kronecker product according to the permutation
pur4i1-; of the integers (1: M +1) =(1,2,...,M +1).
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Consider the special case ¢ (A\) = A®*. By differentiating according to
the definition 1, we get

DAY o 0 o\
D%)\‘g’k = Vec = A\®* g < )

N oA DNy ONg
k-1
= Z Kok (d) <)\®(k71) ® Id) ; (2.2)
=0

where d[k} = [d, d, ce ,d].
—_——
k

Now suppose that ¢(A) = 2'®*A®* where the vector z is a vector of
constants. Here, ¢ is a scalar valued function. By using the Property 1 and
after differentiating r times, we obtain

T = -1 (k—r+ z'A) 2. .
DY7a/ A =k (k= 1) (k=7 +1) [(@'N) 2] (23)
The reason for (2.3) is that the Kronecker product ='®¥ is invariant under
the permutation of its component vectors @, i.e.,

" K 1y (dy) = 2™,

for any [ and j so that
k-1
2/ DKo (d) | = k'™,
j=0

and thus we obtain (2.3). In particular, if r = k, we have

D%kw@k)\@k = klz®k,

2.2.  Taylor series expansion of functions of several variables. Let ¢ ()
= ¢ (A1, A2,...,Ag) and assume that ¢ is differentiable several times in
each variable. Here our objective is to expand ¢ (A) in Taylor series, and
the expression is given in terms of differential operators given above. We
use this expansion later to define the characteristic function and the cu-
mulant functions in terms of the differential operators. Let A = A1.q) =
(A, X2, ..., Ag) € R, Tt is well known that the Taylor series of ¢ () is

A= Y ek A, (24)
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where the coefficients are

0™*p (A)

k) = :
c(k) N g

Here we use the notation

k= (ki ko,... ka), k= kilko!. .. kg,

d
Ao = [ AV, 0k = axbrank - ok,
j=1

The Taylor series (2.4) can be written in a more informative form for our
purposes, namely

pN) =Y Lc(md) A,

where ¢ (m,d) is a column vector, which is the derivative (K-derivative) of
the function ¢ given by

c(mvd): (D®m¢ )‘)\ 0

(see Subsection 5.2 for details).

3 Moments and Cumulants of Random Vectors

3.1.  Characteristic function and moments of random wvectors. Let X
be a d-dimensional random vector and let X = [X', X}]', where X is
of dimension d;, and X5 is of dimension dy such that d = d; + do. Let
A= [ 1, XQ]/. The characteristic function of X is given by

()\1,A2) = Eexp[ (.X Al —|—X )\2)]

00 k-H , , !
k,l=0
_ Z WE (X®k/ ®X®l/) ()‘?k ® A§®Z> ‘

k,1=0
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Here the coefficients of )\?k ® )\?l can be obtained by using the K-derivative
and the formula (2.3). Consider the second K-derivative of ¢

DYV (A1, As)

= D%, (D59 (A1, 20))

¢ (ai) ° (ax:)

(0]
_ Z l — 1) Ex?k—IIA?k—lX%@l—ll)\é@l—l (Xl ® XQ) .

Now, by evaluating the derivative Di(l)’é)w (A1, A2) , we obtain EX1®

1,A2=0
X5. Other moments can be obtained similarly from higher order derivatives.

Therefore, the Taylor series expansion of ¢ (A1, A2) can be written in terms
of derivatives and is given by

k l
AP @AY

) = 3 S (D5 o (ana))
(A1, A2) = — |\ D © (A1, A2
k! ALA AL Ao=0

k,1=0

We note that in general

(D500 (A1, 20) ) — FHEXPF @ X3!

A1,A2=0
?é ,L-k+lEx®l ® Xi@k

(Di( )\1) (A1, >\2))

A1 Ae=0’
which shows that the partial derivatives in this case are not symmetric.

Consider a set of vectors A1,y = [)\'1, '2,...,)\;1]1 with dimensions

[dy,da,...,dy,]. We can define the operator D%l(l)’é) given in the Appendix
for the partitioned set of vectors A(;.,). This is achieved recursively. Recall
that the K-derivative with respect toA; is

!
0
D%Lp Vec( 8)\'> .

DEFINITION 3.1. The n'* derivative D%ﬁ_ | is defined recursively by

®n—1
D’\(l ¥ = D (D)‘(ln 1)(’0>
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where D%ﬁ_ \® is a column vector of the partial differential operator of or-

der n.

We see that this is the first order derivative of the function, which is

already a (n — 1) order partial derivative. The dimension of D?ﬁ_ ) is

1 . . .
d1;[z] = H;-’Zldj, where 1, denotes a row vector having all ones as its entries,
ie., 1p,) =[1,1,...,1] with dimension n. The order of the vectors in Ay.,) is
important.

The following definition generalizes a similar well-known result for scalar
valued random variables, to the multivariate case. Here we assume that the
partial derivatives exist.

DEFINITION 3.2. Suppose that X(j.,) = (X1, X2,...,X}) is a collection
of random (column) vectors with dimensions [d;,ds, ..., d,]. The Kronecker
moment is defined by the following K-derivative:

E(X1®X2-®X,)

Xn

— — -\ H®n

=E | | X = (—1) D)\1 Aov Ay PX 1, X 2,00 X (A1, A2, -, Ap) .
J=1 R X(1:n)=0

We note that the order of the product in the expectations and the deriva-
tives are important, since the Kronecker moment is not symmetric if the
variables X1, X9, -+ , X, are different.

3.2.  Cumulant function and cumulants of random wvectors. We obtain
the cumulant Cum,, (X) as the derivative of the logarithm of the charac-
teristic function px (A) of X = (X1, X5,...,X,)" and then evaluate the
function at zero to obtain:

O] = Cum, (X) = Cum,, (X1, Xs,...,X,),
A(1:n)=0

where A= 9N\ 0Ny - - - ONy,. See Terdik (1999) for details.

Now consider the collection of random vectors
X(l:n) = (X1,X9,...,Xp),

where each X; is of order d;. The corresponding characteristic function of
Vec X (1.p) 18

PX (11m) (A(l:n)) = PVec X (1) (Vec >\(1:n)) = Eexp (z (Vec )\(l:n),Vec X(l:n))) ,
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where A\(1.,) = (A1, A2, ..., An) and d(y.) = (d1,da, . .., dpn). We call the log-
arithm of the characteristic function gvecx,,,, (Vec >\(1:n)) as the cumulant
function and denote it by

¢Vec X(l:n) (Vec A(ln)) = ln ()DVQC X(l:n) (Vec >\(1n)) :

We write ¢X(1:n)(>‘(1:n)) for Yy x(l:n)(Vec )‘(l:n))' The first order K-derivative
of the cumulant function Q)Z)X(I:n) (>\(1:n)) with respect to A(1.,) is defined as

the cumulant of X;.,). Now we use the operator Dg?(’; )@b = D@i (D?gfil)zp)
recursively and the result is a column vector of the partial differentials of

order n, which is first order in each variable A;. The dimension of D?ﬁ_ ) is
1

d," = H?Zldj. Now we define the n'* order cumulant of vectors X(1:n) a8

follows.

DEFINITION 3.3.

Cumn (X(ln)) = (_i)angm)z:bX(l:n) (A(ln))‘ (31)

A(l:n) =0

Therefore, Cum,, (X(I:n)) is a vector of dimension di[;;] containing all
possible cumulants of the elements formed from the vectors X1, Xo,..., X,
and the order is defined by the Kronecker products defined earlier (see also
Terdik, 2002). This definition also includes the evaluation of the cumulants,
where all the random vectors X1, Xo,..., X, need not to be distinct. In this
case, the characteristic function depends on the sum of the corresponding
variables of A(.,,), and we use still the definition (3.1) to obtain the cumulant.

For example, when n = 1, we have
Cuml(X) = EX,
and when n = 2,

Cumg(Xl,XQ) = E[(Xl—EX1)®(X2—EX2)] (32)
= Vec Cov(X 1, X ),

where Cov(X 1, X32) denotes the covariance matrix of the vectors X; and
X 5. To illustrate the above formulae, let us consider an example.

'\
EXAMPLE 3.1. Let X(19) = (X'I,XQ) and assume that X/ 9) has a

!
joint normal distribution with moment (u), p5) , and the variance covariance
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matrix C(x, x,) is given by

C L Cigp Cip
(X1.X5) 7 | Cy1 Cap |-

Then the characteristic function of Xy o) is given by

OX (10 (A1, A2) = exp {i (L1 A1 + prA2)

1
—3 (ATC1,1A1 + X[ Ci 220 + A5Co 1 A1 + )\'202,2>\2)} ;

and the cumulant function of X(; o) is

/(le(l,2) (A17 A2)
=Inpx,, (A1, A2)

. 1
= Z(ull)\l + [,LI2)\2) — 5 (AIICLlAl + AIICLZAZ + AIZCQ’lAl + AéCQ’ZAZ) .
Now, the first order cumulant is

Cum1 (X]) = ZDAJ_SOX(LQ) (AI?AZ) AIZAQZO - “]’

and it is clear that any cumulant of order higher than two is zero. One can
easily show that the second order cumulants are the vectors of the covariance
matrices, i.e.,

Cumg (X, X) = VecCy 5, J,k=1,2.

For instance, if j =2 and k =1,

D2, ACoi i = D, (DS,

ALz )\1)\1202,1)\1) = VecCy.

If j = k =1, then,
DY N Ci1 A1 = 2Vee (A|C11)" = 2C1 1A,
and by applying D%l repeatedly, we obtain

Cum2 (Xl,Xl) = D)\l (D)\IAIICLlAl) /2 = Vec Cl,l-
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3.3.  Basic properties of the cumulants. For convenience of notation,
we set the dimensions of X1, Xo,..., X, to be equal to d. The cumulants
are symmetric in scalar valued case, but not for vectors. For example,
Cums (X1, X3) # Cumy (X9, X1). Here we have to use permutation ma-
trices (see Appendix for details) as will be shown below.

PROPOSITION 3.1. Let p be a permutation of integers (1 : n), and let
the function f ()\(hn)) € R? be continuously differentiable n times in all its
arguments. Then

D%:;hn)f = (Id ® Kp(l:n) (dlzn)) D%gn)f

(1) Symmetry. If d > 1, then the cumulants are not symmetric but satisfy
the relation

Cumy (X(1:m)) = Kp_(llm) (dpng) Cump (X (1))

where p(1:n)=(p(1),p(2),...,p(n)) belongs to the set of all pos-
sible permutations P, of the numbers (1 :n), d,) = (d,d,...,d), and
—_————

n

K1) (d[n]) is the permutation matrix (see Appendix, equation A.1).

For constant matrices A and B and random vectors Y1, Yo,

Cumn+1(AY1 + BY o, X(l:n)) = (A & Idn) Cumn+1(Y1, X(l:n))
+ (B & Idn) Cumn+1(Y2, X(ln))
Also

Cumy11(AY 1, BY 2, X(1.))

= (a ®B® Id”) Cumn+1(Yla Yo, X(l:n))a
assuming that the appropriate matrix operations are valid.
For any pair of constant vectors a and b,

Cumn+1(a XY + b® Yg, X(l:n)) =a® Cumn+1(Y1, X(l:n))
+b ® Cum,, 11 (Y2, X(ln))

. 1:n is i m)» ’ )
(2) Independence. If Xy, is independent of Y y.,,), where n,m > 0, then
Cumn+m(X(1:n)a Y(l:m)) =0.
In particular, if the dimensions are same, we have

Cumn(X(lzn) + Y(ln)) = Cumﬂ(X(l:n)) + Cumn(Y(l:n))'
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(3) Gaussianity. The random vector X (i) is Gaussian if and only if for all
subsets k(1. of (1:n),

Cumyp (X)) = 0, m > 2.

For further properties of the cumulants, we need the following Lemma
which makes it easier to understand the relations between the moments and
the cumulants (see Barndorff-Nielsen and Cox, 1989, p. 140).

REMARK 3.1. Let P, be the set of all partitions /C of the integers (1 : n).
If € ={b1,bs,...,by}, where each b; C (1:n), then || = m denotes the
size of K. We introduce an ordering among the blocks in K. For b;, by € K,

we write b; < by, if
dooh<y o (3.3)
1€b; IEby,
and equality in (3.3) is possible if and only if j = k. The partition K will
be considered as ordered if both, the elements of a block are ordered inside
the block, and the blocks are ordered by the above relation b; < b also.
We suppose that all partitions K in P, are ordered. Denote A = A(1.p) =

1 .
(A, ’2,...,)\'M]I € RN where A\; € R% and N = d,""). In this case, the
differential operator D?iw is well defined because the vector A\ = [)\;, jE b]
denotes an ordered subset of vectors [)\'1, by, /\'M] corresponding to the

order in b. The permutation p () of the numbers (1 : n) corresponds to the
ordered partition K. See Andrews (1976) for more details on partitions.

We can rewrite the formula of Faa di Bruno given for implicit functions
(see Lukdcs, 1955) as follows.

LEMMA 3.1. Consider the implicit function f (g (M), A € R, where f
and g are scalar valued functions and are differentiable M times. Suppose
that X = A1) = [ AL, .,/\'M]I with dimensions [dy,ds,...,dr]. Then,
forn <M,

DEL ) =31 6 () 3 Ko ) I1,.. (P5g ),
K| =r

(3.4)
where p (KC) is a permutation of (1 : n) defined by the partition K, see Re-
mark 5.1.

We consider particular cases of Equation (3.4) which are useful for prov-
ing some properties of cumulants.
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3.4. Cumulants in terms of moments. The results obtained here are
generalizations of the well known results given for scalar random variables by
Leonov and Shiryaev(1959) (see also Brillinger and Rosenblatt, 1967, Terdik,
1999). In order to obtain the cumulants in terms of moments, let us consider
the function f (z) = Inz and g (A) = ¢x,,, ()\(hn)). The 7 derivative of
f(z)=Inzis

FO @) = (1) =1l

So, the left hand side of Equation (3.4) is the cumulant of X;.,). Hence, we
obtain

Cumn(X(lzn))
n

=S ) w1t Y KL (d(m))HihmEerijk, (3.5)

|L|=m

where the second summation is taken over all possible ordered partition
L €P(1:n) with |L| = m, see Remark 3.1 for details. The expectation operator
E is defined in a way such that E (X3, X9) = (EX1,EX>).

3.5.  Moments in terms of cumulants. Let f(z) = expz and g(A\) =
VX (11m) (>\(1:n)) . Hence, all the derivatives of f (z) = exp z are equal to exp z,
and therefore, we have

8"6Xp(g()\)) _ _ ® ®|b|
.o, ~ PO 2 Kol (i [T, (Dg () . (3.6)

1)

The expression for the moment EX( n) is quite general. For example, the

moment EY(”(;)’”) can be obtained from EX( [’)‘] where

(Yl[kl]"" Y = (yla---aylja---a},ma-" ,Ym) = X(l:n)a say,

v~

k1 km

m[km])

i.e., the elements in the product Y( g)m) are treated as distinct.

®1[n] ®
> Kby (o) [T, Comp(Xe),  (37)
CEP(l n)
where the summation is over all ordered partitions £ ={by,bs,...,b;} of

(1:n).



340 S.R. Jammalamadaka, T.S. Rao and G. Terdik

3.6.  Cumulant of products via products of cumulants. Let Xy denote
the vector where the entries are obtained from the partition K, i.e., if I =
{b1,b,...,by,}, then Xic = ([1° Xy, [1° Xbs,---, [ Xb,,) - The order of
the elements of the subsets b € K and the order of the subsets in I are fixed.
Now the cumulant of the products can be expressed by the cumulants of the
individual set of variables Xp = (X,j € b), b € L such that CUL = O,
where O denotes the coarsest partition with one subset {(1 : n)} only. Such
partitions £ and K are called indecomposable (see Brillinger, 2001, Terdik,
1999).

Curmie ((TT" X6, T Koo I X))

— —1 ®
= > Ky (dom) Hbec Cumyp) (Xop), (3.8)
KuL=0
where X3 denotes the set of vectors from X, s € b.

ExXAMPLE 3.2. Let X be a Gaussian random vector with EX =0, A
and B be matrices with appropriate dimensions and Cov(X, X) = X. Then,

Cum (X'AX,X'BX) =2Tr AXB'S (3.9)
(see Taniguchi, 1991). We can use (3.8) to obtain (3.9) as follows:

Cum (X'AX,X'BX)

= Cumgy ((VecA)' X ® X, (VecB) X ® X |

= [(Vec A)' ® (Vec B)'] Cumy (X ® X, X ® X))

= [(Vec A) @ (Vec B)'] [K3\5 + K5.L,] [Vec E ® Vec X
=2(VecE) (a® B) VecE = 2Tr AXB'S.

4 Applications to Statistical Inference

4.1.  Cumulants of the log-likelihood function. The above results can be
used to obtain the cumulants of the partial derivatives of the log-likelihood
function, see Skovgaard (1986). These expressions are useful in the study of
the asymptotic theory of statistics.

Consider a random sample (X, Xo,...,Xy) = X € RY with the like-
lihood function L (¥, X), and let [ () denote the log-likelihood function,
ie.,

1(¥)=InL (¥ X), ¥R
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It is well known that under the regularity conditions, we have

Eal (9) 0l (9) E %1 (9)

o9y 09y 091002

The result (4.1) can be extended to products of several partial derivatives (for
d = 4, McCullagh and Cox (1986) use these expressions in the evaluation
of Bartlett’s correction). We can arrive at the result (4.1) from (3.4) by

observing L (9, X) = e®). Ford = 2, we have

2 ®  9?L(9,X)
90,00, 89,09,

(4.1)

and from (3.4), we have

9%el(®) _ o) [9L(9) 0L (9) N RRAC))
99,00, 99, 89y | 90,00,

Equating the above two expressions, we get

I PLW.X) _a@)a@®) L)
L(9,X) 00,00, 991 0095 00,005

The expected value of the left hand side of the above expression is zero, as
interchange of the order of the derivative and the integral is allowed. This
gives the result (4.1). The same argument leads, more generally, to a result
involving several partial derivatives:

S Y E H[ ]il% )]:0. (1.2

r=1KeP; beK
|K|=r

This result is a consequence of (3.6). Proceeding in a similar fashion, as-
suming the regularity conditions in higher-order and using (3.7), we obtain
the cumulant analogue of the above as

ZZCum(H(?';ﬁl(ﬂ),belC):O. (4.3)
b

r=1KeP,
|K|=r

The equation (4.2) is in terms of the expected values of the derivatives of
the log-likelihood function, whereas (4.3) is in terms of the cumulants. For
example, suppose that we have a single parameter 14, and let us denote

imma,miomg) =€ [ Zao] " [ L] [ S [Zao)]
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then from the formula (4.2) we obtain

g (0,0,0,1)+4pq (1,0,1,0)+6p4 (2,1,0,0)+3p4 (0,2,0,0) 414 (4,0,0,0) = 0.

(4.4)
To obtain (4.4), we proceed as follows. Consider the partitions IC € Py. If
|| = 1, we have only one partition (1,2,3,4), if || = 2, we have 4 terms
of type {(1,2,3),(4)} and 3 terms of type {(1,2),(4,3)}, if || = 3, we
have 6 terms of the type {(1),(2),(4,3)}. Now if 1 =¥ =33 =394 = 9,
then my, mo, m3, my show the numbers of the elements of the subsets in a
partition. For instance, (mq,mo,ms, ms) = (2,1,0,0) corresponds to the
partitions of the type {(1),(2),(4,3)} and so on. Hence the result (4.4).
McCullagh and Cox (1986, eqn. (10), p. 142) obtained a similar result for
cumulants:

C o 1)) +4cC 3 1(9)
um | Zo7t um | S5l 3192
a 2
13C ‘9— >, ()
A ezt Y 8192
0 0 8 B
— 0, (4.5)

which is a special case of (4.3).

4.2.  Cumulants of the log-likelihood function, the multiple parameter
case. The multivariate extension (i.e., when the elements of the parameter
vector are vectors as well) of the formula (4.2) can easily be obtained using
Lemma 1. If we partition the vector parameters into n subsets, ¥ = 9(;.,) =

(9,95, ... ,19;1]1 with dimensions [dy, ds, . .., dy] respectively, then it follows
that
1 polbl _
ZZK (din) EHbK< 1 ))_0, (4.6)
r=1 KePy
|K|=r

where ¥, denotes the subset of vectors [9¥;,7 € b]. In particular, if n = 2
and 91 = 99 = 9, then (4.6) gives the well known result

Cov (Dyl (9) , Dyl (9)) = —E (D9 D1 (9)) .
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In vectorized form, the same can be written as
E (D51 (9) ® DS1(9)) = —E (D51 (9)) .
In the case n = 4, say and 91 = 92 = 93 = ¥4 = ¥, we have
g (0,0,0,1)+4py (1,0,1,0)+6p4 (2,1,0,0)+3p4 (0,2,0,0)+p4 (4,0,0,0) = 0,
where

My (m1?m23m3am4)

=E[D§1(9)]"™ ® [D§ (9)]"™ © [D§% (9)] 7" © [D§ (9)] 7™ .
We can obtain a similar expression for the cumulants, and it is given by
a b
SN Kk (di) Cum, (be' 1(9),be /c) —0.

r=1 K:EPd
|IK|=r

4.8.  Multivariate measures of skewness and kurtosis for random vec-
tors. In this section, we define what we consider to be natural measures
of multivariate skewness and kurtosis and show their relation to the mea-
sures defined by Mardia (1970). Let X be a d-dimensional random vector
whose first four moments exist. Let X denote the positive-definite variance
covariance matrix. The “skewness vector” of X is defined by

¢x = Cumgy (2*1/2)(, »-l2x, 2*1/2)()
®3
— (2—1/2) Cums (X, X, X),
and the “total skewness” is

(x = [¢x|
The “kurtosis vector” of X is defined by

Kx = Cumy (E*I/ZX, »12x n12x, E*I/ZX)
®4
:(2*1/2) Cumy (X, X, X, X),

and the “total kurtosis” is

kx =Tr (Vec*1 nx) ,
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where Vec™! kx is the matrix M such that Vec M =k x. The skewness and
the kurtosis for a multivariate Gaussian vector X is zero. {x is also zero
for any distribution which is symmetric. The skewness and the kurtosis are
expressed in terms of the moments. Suppose that EX = 0. Then

Cx = (2*1/2)@ EX®3, (4.7)

The total skewness (x, which is just the norm square of the skewness vector
¢ x, coincides with the measure of skewness f; 4 defined by Mardia (1970).
For any set of random vectors, we have

&
Cumy (X1;4) = EH X 1.4 — Cumy (XI,X2)®CUm2 (X3,X4)
—K_l (d[4]) Cum2 (Xl,X3)®Cum2 (XQ,X4)

P2e3
- K, ! (d[4]) Cumy (Xl,X4) ® Cumgy (XQ,Xg), (48)

Pae2

and therefore the kurtosis vector of X can be expressed in terms of the fourth
order moments. By putting X; = X9 = X3 = X4 = X in the above,

®4
Kx = (2*1/2) Cumy (X, X, X, X)

®4
= (Z77) T EX - (T4 KL, (du) + KL, (d)

P23 Pacs2
®4
X (2—1/2) Cumz (X, X) ® Cums (X, X)
®4
= (72 TEXY - (T4 KL, (di) + KL, (d)) [Vee Iy@Vee I,
(4.9)
Mardia (1970) defined the measure of kurtosis as
Pra =E(X'S1X)?,
and this is related to our total kurtosis measure xx as follows
Bog=kx +d(d+2)=Tr (Vec ' kx) +d(d+2).
Indeed

Tr (Vec1 [(21/2)®4 EX®4]>

—ETr ([2—1/2X} ®2 [2_1/2X] /®2>

:ET‘r([(El/?X),(El/ZX>]®2> = E(X's'x)%.
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We note that if X is Gaussian, then kx = 0, and hence 35 4 = d(d + 2).

4.4.  Multiple linear time series. Let X, be a d dimensional discrete
time stationary time series. Let X satisfy the linear representation (see
Hannan, 1970, p. 208)

X, =) H(k)e,, (4.10)
k=0

where H (0) is identity, Y || H (k)|| < oo, the e;’s are independent and
identically distributed random vectors with Ee; = 0, Ee;e; = X. Let
Kmi1 (€) = Cump,i1 (es,eq,...,€;) be the vector d™t! x 1. We note that
Ko (€) = Vec X, and the cumulant of X is

Cumyp 41 (Xt7 Xitrs Xty oo Xtry,)

—ZH VOH (k+7)® - ® H (k+ Tm) K1 (€) (4.11)

= Cm+1 (T1, 72y« s Ti) -

Let X satisfy the autoregressive model of order p given by
X+ A X1+ A X o+ + Ap Xy = ey,
which can be written as
(I+AB+ AB?+---+ A,BP) X, = ey,

where B is the backshift operator. We assume that the coefficients {A;}
satisfy the usual stationarity condition (see Hannan, 1970, p. 212) and note
that

X, =(I+AB+ AB? -+ A, BP) -t e (Z H (k ) e;. (4.12)
From (4.10) and (4.12), we have
(I+AB+ AyB?+---+ A,BP) (Z H (k ) I, (4.13)

from which we obtain
H(0)+ (H(1)+AH(0)B+ (H(2)+ A H (1) + AyH (0)) B® +
+(Hp +AH@pPp-1)+AH(p—-2)+---+ A,H (0)) B” +
+H(p+1)+AH(@p)+-+
=TI
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Equating powers of B7 for j > 1, we get
H@G)+AHG-1)+AHG-2)+-+A,H(j—p) =0, j>1 (4.14)
(here we use the convention H (j) = 0, if j < 0). A recursive formula for

H (j) follows from (4.14). By substituting for H (k + 71) from this formula

into (4.11), for 7 > 1, we get

Cri1 (11,72, ., Tim)

= _ZH(k)®[A1H(k+T1—1) +AH (k—i—Tl—Q) +"'+APH (k+71—p)]
k=0

® - @ H (k+7y) Km41 (€)

[
M~
NE

e
Il

—
=
Il

H(k)®A;H (k+71—j)H(k+12)® - -@H (k+Tp) K1 (€)
0

I
M-
NE

e
Il
—
=~
Il
S

Ti®A;Iyn—1| [ H(E)QH (k+11—7)QH (k+12) 9 H(k+7y,)]

X Kmt1 (€)

P
:Z (I;® Aj ® Igm-1) Crpt1 (TlfjaTZV"?Tm)'
Jj=1

Thus, we obtain

p
Cm+1 (TI,TQ,...,Tm) = —Z(Id®Aj ®Idm—l)Cm+1 (7'1 —j,Tg,...,Tm).
Jj=1

If we put m =1 in (4.15), we get

Cy(n)=-Y (Ia®A;j)Cs(r1 —j),

i=1

which can be written in matrix form as
P
Ca(m) ==Y A;Co(n —j),
j=1

which is the well known Yule-Walker equation in terms of second order co-
variances. Therefore, we can consider (4.15) as an extension of Yule-Walker
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equations in terms of higher-order cumulants for multivariate autoregressive
models.

The definition of the higher-order cumulant spectra for stationary time
series comes in a natural way. Consider the time series X; with (m + l)th
order cumulant function

Cumm+1 (-Xta-Xt+T17Xt+’r27 s 7Xt+Tm) - Cm+1 (T177—27 ... 7Tm) )

and define the m* order cumulant spectrum as the Fourier transform of the
cumulants

00 m
S (wi,wa, ..., wy) = E Crm1 (1,725 -+, Tim) €xp | —i E :Tj""j J
T13T2yeenyTm =—00 j:l

provided that the infinite sum converges. We note here that the connection
between the usual matrix notation for the second order spectrum Ss (w) is
given as

S (w) = Vec[Sy (w)]',
see (3.2).

4.5.  Bhattacharya-type lower bound for the multiparameter case. In this
section, we obtain a lower bound for the variance covariance matrix of an
unbiased vector of statistics, which is a linear function of the first & partial
derivatives. This corresponds to the well known Bhattacharya bound (see
Bhattacharya, 1946, Linnik, 1970) for the multiparameter case, which does
not seem to have been considered anywhere in the literature. Consider a
random sample (X1, Xo,...,X,) = X € R* with likelihood function
L(¥9,X), ¥ € R Suppose that we have a vector of unbiased estimators,
say, g (X) of g (9) € R%. Define the random vectors

;o 1 ® / 1 ©2 '
Df = <7L(19’X)D19L(19,X) ,711(19’)()D19 L(Y¥,X),
1 ok '
...’ml)ﬁ L(ﬂ,X)),

Y = (g (X),Yhy),

where the dimension of Y is d; +d+d?+. ..+dF. The second order cumulant

~ . . 1 ®7 S .
between g (X)) and the derivatives T30 X (19,X)D19 L9, X),5=1,2,...,k,is
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as follows
Cum (§(X) , mpg%w,xo
:Vec/ [D%jL(ﬂ,X)} §(X)dx
:/§(X)®D§’jL(z9,X)dX = Dg(9).
The covariance matrix between g (X) and éDSj L(¥,X) is calcu-

L(¥, X
lated using (3.2). The variance matrix Var (I(' Df) 28 singular because the
elements of the derivatives D?j L (¥, X) are not distinct. Therefore, we
reduce the vector of derivatives using distinct elements only. To make it
precise, we first consider second order derivatives. We define the duplication
matrix D9 4, which reduces the symmetric matrix V; to the matrix v (Vy),
which is the vector of lower triangular elements of V;. We define D, 4 as
follows:
@2’[11/2 (Vd) = Vec Vd.

The dimension of vy (V) is d (d + 1) /2, and that of Dq 4 is d? x d (d + 1) /2.
It is easy to see that 79’2’ 492, is non-singular (the columns of D5 4 are linearly

independent — each row has exactly one nonzero element). Therefore, the
Moore-Penrose inverse 79; g of Do g is

ggr,d = (912,11532@)71 53’2,d
such that
1 20 (Vd) = @;:d Vec Vd

(see Magnus and Neudecker, 1999, Ch. 3 Sec. 8, for details). The operator
D%Q is defined by
0 0

CoxON”

which is actually (%)®2 . The matrix %% is symmetric, and therefore we

D?Q = Ve

can use the inverse 79; g of the duplication matrix
+ N2 _ ®2
34Dy = V2 (Dﬂ )

to get the necessary elements of the derivatives. We can extend this proce-
dure for higher-order derivatives by defining

+ ®k _ ®k
o D" =vi (D5),
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where vy, (D§k> is a vector of the distinct elements of D%’k listed in the

original order in D?k. Now, let

_ 5 1 + p®i
Cy,j = Cov (9 (X), 79 X) (@j’dDi9 ) L (19,X)>
The elements of C ; are those of the cumulant (see (3.2))

Cum (g(X) : ﬁ (@jdegJ) L(19,X)> :

Now, considering the vector of all distinct and nonzero derivatives,

Df = # ® ’# + PH®2 '
1
T DL L. XY ).

T = (9 (X),Thy),

we obtain the generalized Bhattacharya lower bound in the case of multiple
parameters. This is obtained by considering the variance matrix of X', whose
positive semi-definiteness implies

Var (g (X)) — Cgpy Var (X py) ™' Cl) p; >0 (4.16)
with Cy pr =[Cy,1,Cy2,...,C4]. The Cramer- Rao inequality is obtained
by setting k£ = 1, i.e., by considering only the first derivative vector.

Let us now consider an example to illustrate the Bhattacharya bound
given by (4.16).

EXAMPLE 4.1. Let (X1, X5,...,X,) = X € R™0 be a sequence of inde-
pendent Gaussian random vectors with mean vector ¥ € R% and variance
matrix I,. Suppose that we want to estimate the function g (¢) = 19 e
R. Here d = dy, d; = 1. The unbiased estimator for g () is

a(X)zgjl(Yi—%),

where X, is the sample mean computed using the random sample consisting
of n observations on the &k random variable of the random vector X. The
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variance of the estimator g (X)) is

. 492 2 4 2d
vag) =3 (e 2) < Lpop+ X wm

The Cramer-Rao bound for this estimator is % |9, which is strictly less

than the actual variance. The derivatives D?j L (9, X) for j > 2 are zero.
For 7 = 1,2, we have

DYL(9,X)=n(X-9)L(9,X),

- 1
DL (9,X) =n’ [(X - 19)®2 — = Vec Id] L(¥9,X).
n

Therefore, we obtain (using all the elements of second partial derivative
matrix)

~/ _ 1 ® ! 1 ®2 !
Df — <L(I9,X)D19L('0’X) ’L(’ﬂ,X)Dﬁ L(ﬂaX)

_ (n (X —9) n? [(7_0)®2_ %VecId]l> |

Note that if we consider only the vector of first derivatives, then the second
element of above vector will not be included in the lower bound, making the
Cramer-Rao bound smaller. If we use the reduced number of elements for
T, /> we have

!
,Df = <n (Y—ﬂ)”rﬂ [@Id (Y—'g)@? B %@idVecId] > i

The variance matrix of Y py will contain the following matrix as a diagonal
block:

n202 =n? Vec;;’d2 <©;d>®2 Cumy <[(f — 19)®2 — %Vec Id]>
®2
= Vee s (D4,) (Gl (dia) + KL, (dig)) (Vee )™
!/
=05y [Le + Ky, ()] (914) -

Denote
[Id2 + KP1<—>2 (d[4})] = Ny,

DN | =
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and then the matrices satisfy

Ny =N/, =N?,
and Nd = 92’d©;—,d

(see Magnus and Neudecker, 1999, Ch. 3 Sec. 7-8, Theorem 11 and 12). We
obtain

! /
—1
n’Cs = 20§ N, (9§, Na) =295, (9f,) =2 (®54020) ",
which is invertible. The inverse of the variance matrix of X p; is given by

Var (T >r1—[%’d 0 ]
b B 0 2%2@,2[1@2@ '

Now, to obtain the matrix Cy py = [Cy,1,Cy 2], we need

—~ 1
Cy1 =29,
and
~ 1
Cum (9 (X), ml/ (DS?) L (19,X)> = 2©ZdVec I,

C;Q = 279;@ Vec I,.
Finally, we obtain

Cy,ny Var (‘I‘Df)i1 Clg,Df

4 2 /
= HrﬂH? + ) (Vec I5)' (@2@@;@) @27(1@;@ Vec I,

4 1
:E “'0“2 + ﬁ (VeC Id)lNd Vec Id

4 2d
== 19 + =5,
n n

which is the Bhattacharya bound and is the same as the variance of the
statistic g (X)), given by (4.17).
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Appendix

A.1. Commutation matrices. The Kronecker products have the advan-
tage in the sense that we can commute the elements of the products using
linear operators called commutation matrices (see Magnus and Neudecker,
1999, Ch. 3 Sec. 7, for details). We use these operators here in the case of
vectors. Let A be a matrix of order m x n, and the vector Vec A’ is a per-
mutation of the vector VecA. Therefore there exists a permutation matrix
K ,,.,, of order mn x mn, called commutation matriz, which is defined by the
relation

K,,,VecA=VecA

Now, if @ is m x 1 and b is n x 1, then
Ky (b®a) = Ky, Vec (ab') = Vec (ba') = a®b.
From now on in the sequel, we shall use a more convenient notation
K,.,=K(n,m),

which means that we are changing the order in a K-product b® a of vectors
beR" and a € R™.

Now, consider a set of vectors (a1, az,...,a,) with dimensions d(;.,) =
(dy1,ds,...,dy) respectively. Define the matrix

®
K1) (dam) = H

&

. Idi QK (dja dj+1) ® Hz:j+2:n

i=1:j— Ta;,
where Hfil:j stands for the Kronecker product of the matrices indexed by
1:5=(1,2,...,7). Clearly,

®
K ioj(dig) H a;

i=1ln

® [

= Hi:M_1 (I4;ai) ® (K (dj,dj11) (@ ® aj41)) @ Hi:jwm (I4;@:)
& &

- Hi:l:j—l 3 ® Gj+1 ® a; @ Hi:j+2:n @i

Therefore, one is able to transpose (interchange) the elements a; and a1
in a Kronecker product of vectors by the help of the matrix Ko 11 (di:n) -
In general, K;-HjJrl (dlzn) = Kj_i)jJrl (dlzn) but Kj_|_1<_)j ;fé Kj<_>j+1 because
the dimensions d;;1 and d; are not necessarily equal. If they are equal, then

Kitio;=Kjgjt = Kj_i)jﬂ = K, ;1- We recall that 9B, denotes the
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set of all permutations of the numbers (1:n) = (1,2,...,n). If p € P,
then p(1:n)=(p(1),p(2),...,p(n)). From this, it follows that for each
permutation p (1 :n)=(p(1),p(2),...,p(n)), p € Py, there exists a matrix
Ky (1:n) (d1:) such that

& &
Ky (d(1:n)) Hi:l:n a; = Hi:m (i), (A.1)
just because any permutation p (1 : n) can be obtained from the product by
the transposition of neighbouring elements. Since there is an inverse of the
permutation p (1 : n), therfe exists an inverse Kp*(llm)-(dl:n) for Ky(1.)(d1:n)
as well. Note that the entries of dy., are not necessarily equal — they are the
dimensions of the vectors a;, + = 1,2,...,n. The following example shows
that K1) (di:n) is uniquely defined by the permutation p (1 :n) and the
set di.,. The permutation ps_,4 is the product of two interchanges po. 3

and P34, i'e'a

Ky, (di4) = Ky, ,, (d1,d3,da,dy) Kyp,, ., (di.4)
= (Id1 X Id3 (4 Kd4-d2) (Id1 (4 Kdg-d2 (4 Id4) .

This process can be followed for any permutation p (1:n) and for any set
dy., of the dimensions.

Likewise, the matrix with only the pair of elements j and k transposed
in the product, may be denoted by Ky, (di.n). We will use the simplified
notations K and K, for the operators Ky, and Ky, , respectively.

It can be seen that
S Kj—l,c =Ko (A.2)

j<k —

Let A be m x n and B be p X ¢ matrices, it is well known that
K12 (m,p) (A® B) K12 (g,;n) = B® A.

The same argument in the case of vector Kronecker product leads to the
technique of permuting matrices in a Kronecker product by the help of com-
mutation matrix K.

Using the above notation, we can write

Vec(A®@ B) = (I,, ® K (m,q) ® I,) Vec A® Vec B
= Ks.3(n,m,q,p) Vec A ® Vec B. (A.3)
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A.2. Taylor series in terms of differential operators. We have

v = Y e =D — Y (k)
kl,kz,...,kd:U m=0 kl,kQ,...,deO
Ykj=m

This can be re-written in the form

where ¢ (m, d) is a column vector

¢ (m,d) = (D?{%/; (A)) ‘ o

with appropriate entries from the vectors {c(k),¥k; = m}. The dimen-
sion of ¢ (m,d) is the same as that of A®™, i.e., d™. To obtain the above
expansion, we proceed as follows. Let & € R? be a real vector and consider

m

d m ml
N\ o Y _ e kyk
(a: /\) = E TiAj = E k!:c A%,
Jj=1 k1,k2,....kq=0
Ykj=m

and we can also write

(@A) = (@A) = (a¥™)' A&,

Therefore
m m' , .
: _ Xm m
k1,k2,....,kq=0
j=m
Sk
The entries of the vector ¢ (m,d) correspond to the operator W hav-
k

ing the same symmetry as x. Therefore, if ™ is invariant under some
permutation of its factors, then ¢ (m, d) is invariant as well. From Equation
(2.3) we obtain that

c(m,d) = (D%mzp ()\)) ‘)\:0.
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